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Using angular-position–orbital-angular-momentum entangled photons, we study angular two-photon

interference in a scheme in which entangled photons are made to pass through apertures in the form of

double angular slits, and using this scheme, we demonstrate an entangled two-qubit state that is based on

the angular-position correlations of entangled photons. The entanglement of the two-qubit state is

quantified in terms of concurrence. These results provide an additional means for preparing entangled

quantum states for use in quantum information protocols.

DOI: 10.1103/PhysRevLett.104.010501 PACS numbers: 03.67.Bg, 42.50.Ex, 42.50.Tx, 42.65.Lm

The signal and idler photons produced by parametric
down-conversion (PDC) are entangled in several different
degrees of freedom including time and energy, position and
momentum, and angular position and orbital angular mo-
mentum (OAM). Entanglement of the two photons in a
given degree of freedom gives rise to two-photon coher-
ence in the corresponding domain, which manifests itself
as two-photon interference in that particular domain.
Several two-photon interference effects have been ob-
served in the temporal [1–5] and spatial [6–8] domains.
These effects have been used to test the foundations of
quantum mechanics [9–11] and are central to many appli-
cations as well [12–14].

The existence of a Fourier relationship between angular
position and OAM gives rise to angular interference—
interference in the OAM-mode distribution of a photon
field when it passes through an angular aperture [15–18].
Angular Fourier relationship in the context of angular-
position–OAM entanglement leads to two-photon interfer-
ence in the angular domain [19–21]. In this Letter, we
study angular two-photon interference in a scheme in
which entangled photons are made to pass through aper-
tures in the form of double angular slits and, using this
scheme, we demonstrate an entangled two-qubit state that
is based on the angular-position correlations of the down-
converted photons. Entangled two-qubit states are the nec-
essary ingredients for many quantum information proto-
cols [12–14], and they have previously been realized by
exploring the correlations of entangled photons in variables
including polarization [22], time bin [4,5], frequency [23],
position [7,8], transverse momentum [24,25], and OAM
[19–21]; however, to date, the angular-position correla-
tions had not been utilized. Therefore, the results presented
here not only demonstrate two-photon coherence effects in
the angular domain but also provide an additional means
for preparing entangled quantum states.

Let us consider the situation shown in Fig. 1(a). A
Gaussian pump beam produces signal and idler photons

by type-I degenerate PDC with noncollinear phase match-
ing. The state jc tpi of the down-converted two-photon

field is given by [26,27]:

jc tpi ¼
X1

l¼�1
cljlisj�lii: (1)

FIG. 1 (color online). (a) Schematic of the experimental setup
(see text for details). (b) An example of the phase pattern
impressed on the SLM. (c) Two-photon path diagrams showing
the four alternative pathways by which signal and idler photons
can pass through the angular slits and be detected in coincidence
at detectors Ds and Di.
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Here s and i stand for signal and idler, respectively, and jli
represents an OAM eigenmode of order l, corresponding to
an azimuthal phase eil�. jclj2 is the probability that the
signal and idler photons are generated in modes of order l
and �l, respectively. The width of this mode probability
distribution is referred to as the spiral bandwidth of the
two-photon field [28]. The signal and idler photons are
made to pass through double angular slits [as shown in
Fig. 1(a)] located in the image planes of the crystal. The
amplitude transmission functions of the individual angular
slits are given by

Ajað�jÞ ¼ 1 if � �=2<�j < �=2 or else 0; (2)

Ajbð�jÞ ¼ 1 if �� �=2<�j < �þ �=2 or else 0;

(3)

where j ¼ s, i. There are, in principle, four alternative
pathways—represented by the two-photon path diagrams
[3] of Fig. 1(c)—by which the down-converted photons can
pass through the apertures and get detected in coincidence
at detectors Ds and Di. In alternative 1 (4), the signal
photon passes through slit AsaðAsbÞ and the idler photon
through slit AiaðAibÞ. In alternative 2 (3), the signal photons
passes through slit AsaðAsbÞ and the idler photon through
slit AibðAiaÞ. We represent the states of the signal and idler
photons in alternatives 1, 2, 3, and 4 by jsaijiai, jsaijibi,
jsbijiai, and jsbijibi, respectively. Because of the strong
position correlations of the two photons in the image
planes of the crystal, only alternatives 1 and 4 have appre-
ciable probabilities. Therefore, the density matrix � of the
two-qubit state thus prepared can be written in the angular-
position basis fjsaijiai; jsaijibi; jsbijiai; jsbijibig as:

� ¼ �11jsaijiaihiajhsaj þ �14jsaijiaihibjhsbj
þ �41jsbijibihiajhsaj þ �44jsbijibihibjhsbj; (4)

where �11 and �44 are the probabilities that the signal and
idler photons are detected in alternatives 1 and 4, respec-
tively, with �11 þ �44 ¼ 1. The off-diagonal term �14 is a
measure of coherence between alternatives 1 and 4, with
�14 ¼ ��

41; it is, in general, a complex number and can be
written as �14 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�11�44
p

�ei�, where � is the degree of

coherence and � the argument of �14.
We now write the density matrix � in the OAM basis. By

taking the Fourier transforms of the amplitude transmis-
sion functions Asað�sÞ and Aiað�iÞ [15,16], corresponding
to each OAM mode in the summation of Eq. (1), we write
jsaijiai in the OAM basis as

jsaijiai¼A
X
l

cl
X
l0

1

2�

Z �

��
d�sAsað�sÞe�iðl0�lÞ�s jl0is

�X
l00

1

2�

Z �

��
d�iAiað�iÞe�iðl00þlÞ�i jl00ii; (5)

where A is the normalization constant to ensure that
hiajhsajsaijiai ¼ 1. We evaluate jsaijiai by substituting

for Asað�sÞ and Aiað�iÞ from Eq. (2). In a similar manner,
we evaluate jsbijibi by substituting from Eq. (3). The
coincidence count rate Rsi of detectors Ds and Di, which
is the probability per ðunit timeÞ2 that a photon is de-
tected at detector Ds in mode ls and another at detector
Di in mode li, is given by Rsi ¼ ihlijshlsj�jlsisjliii. Using
Eqs. (2)–(5), we find that

Rsi ¼ A2�4

16�4

��������
X
l

clsinc

�
ðls � lÞ�

2

�
sinc

�
ðli þ lÞ�

2

���������
2

� f1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�44

p
� cos½ðls þ liÞ�þ ��g: (6)

The interference between the two alternatives manifests
itself in the periodic dependence on the angular separation
� and on the sum of the OAMs ls þ li. From Eq. (6),
ignoring the effects due to diffraction envelopes, the visi-
bility V of the coincidence fringes can be seen to be

V ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�44

p
�: (7)

The entanglement of a general two-qubit state can be
characterized in terms of Wootters’ concurrence [29,30],
which ranges from 0 to 1, with 1 corresponding to the
maximally entangled two-qubit state and 0 to a nonen-
tangled state. To calculate concurrence, we write the den-
sity matrix � in the full 4� 4 form. The concurrence C is
then given by C ¼ maxf0; �1 � �2 � �3 � �4g. Here the
�is are the (positive) eigenvalues, in descending order, of
the operator R where R2 ¼ ffiffiffiffi

�
p

	y � 	y�
�	y � 	y

ffiffiffiffi
�

p
,

with

	y ¼ 0 �i
i 0

� �

being the Pauli operator and �� the complex conjugate of
�. For the density matrix of Eq. (4), which has only two
nonzero diagonal elements, the concurrence C is

C ¼ 2j�14j ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�44

p
�: (8)

Comparing Eqs. (7) and (8), we see that the concurrence is
equal to the visibility of angular two-photon interference
fringes.

C ¼ V: (9)

In the setup of Fig. 1, the pump is a frequency-tripled,
mode-locked, Nd-YAG laser (Xcyte) with a pulse repeti-
tion frequency of 100 MHz at 355 nm. SLM denotes a
spatial light modulator from Hamamatsu, SMF a single
mode fiber, and F an interference filter with 10-nm band-
width, centered at 710 nm. The 400 �m diameter Gaussian
pump beam was normally incident on a 3-mm-long crystal
of beta barium borate, phase matched for frequency degen-
erate type-I down-conversion with a semicone angle of the
down-converted beams of 3.5�. We note that for the given
pump beam and phase-matching parameters, the conserva-
tion of OAM is strictly obeyed in the down-conversion
process [31]. The crystal plane was imaged, with a mag-
nification of about 5, onto the SLM planes, which were
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then imaged onto the input facets of the SMFs with a
demagnification of about 380. The SLMs were used for
two purposes as illustrated in Fig. 1(b). One, they were
used for selecting out OAM modes [32]; and two, they
were used for simulating amplitude apertures [33] de-
scribed by Eqs. (2) and (3).

First of all, without any apertures, the mode probabilities
jclj2 were measured. Figure 2 shows the measured coinci-
dence counts plotted against l, with signal and idler pho-
tons being detected in modes of order l and �l,
respectively. The mode probabilities jclj2 were calculated
by normalizing the counts of Fig. 2.

Second, we verify the preparation of the two-qubit state
as represented by Eq. (4). Coincidence counts were mea-
sured with only one of the signal and one of the idler slits
(with � ¼ �=10 and � ¼ �=4) being displayed on the
SLMs and with both signal and idler photons being de-
tected in modes of order 0. Figure 3(a) shows the measured
coincidence detection probabilities of the signal and idler
photons in the four different alternatives. We find that the
probabilities �22 and �33 are negligibly small, showing that
the two-qubit state prepared in our experiment resembles
the state represented by Eq. (4) to a very good approxima-
tion. Therefore, as shown by Eq. (9), the entanglement of
the prepared two-qubit state can be characterized by mea-
suring the visibility of two-photon interference fringes in
the OAM basis.

Next, measurements were made in the OAM basis. Both
signal and idler slits, with � ¼ �=10 and � ¼ �=4, were
displayed on the SLMs. SLMi was adjusted to successively
select out two different idler OAM modes: li ¼ 2 and li ¼
�2. For each selected idler mode li, coincidence counts
were measured as a function of the signal OAM mode ls.
Figure 3(b) shows the coincidence counts plotted against ls
for two different values of li. The solid dots are theoretical

fits based on Eq. (6), using the values of jclj2 calculated
from Fig. 2. The visibility of the two-photon fringes is
92.8% (96.3%, after correcting for random coincidences),
within 2% experimental error. Thus, using Eq. (9), we find
that the concurrence of the prepared two-qubit state is
0.928 (0.963, after correcting for random coincidences).
However, as �22 and �33 are not precisely zero in our

experiment, it is desirable to quantify the error in the above
estimation of concurrence. Although a precise error calcu-
lation requires knowledge of all of the 16 different terms of
the two-qubit density matrix and is beyond the scope of this
Letter, a realistic estimation can be obtained by modeling
the probabilities �22 and �33 as a small amount of noise in
the two-qubit density matrix � in Eq. (4). The corrected

density matrix �ðcÞ is then given by �ðcÞ ¼ �þ
�22jsaijibihibjhsaj þ �33jsbijiaihiajhsbj and the visibility
VðcÞ of angular two-photon fringes by VðcÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�44

p
�,

with �11 þ �22 þ �33 þ �44 ¼ 1. The concurrence CðcÞ of
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FIG. 2 (color online). Measurements of the OAM-mode prob-
abilities with the SLMs set for uniform reflectivity. Measured
coincidence counts are given as a function of l, the OAM-mode
order of the detected signal photon, with �l being the OAM-
mode order of the idler photon. The solid dots are the expected
values based on the theoretical prediction of Ref. [28] [Eq. (10)];
the solid line through the dots is drawn as a visual guide. The
fitting parameters are an overall constant factor and the effective
beamwidth of down-converted modes as measured by the detec-
tion system.
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FIG. 3 (color online). (a) Measured coincidence detection
probabilities �11, �22, �33, and �44. The measured probabilities
are shown by blue bars (black in the printed version); the
probabilities after correcting for random coincidences are shown
by light blue bars (gray in the printed version). (b) Measured
coincidence counts (light red, gray in the printed version) as
functions of ls for two different values of li, with � ¼ �=10 and
� ¼ �=4. The solid dots are theoretical fits obtained from
Eq. (6), the solid lines are visual guides, and the dashed lines
are measured random coincidences for the 10-ns coincidence
detection window.
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the state takes the following form: CðcÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�44

p
��

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�22�33

p
, and with the above expression for visibility, it

can be written as

CðcÞ ¼ VðcÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�22�33

p
; (10)

which reduces to the formula given in Eq. (9) when
�22 ¼ �33 ¼ 0. Using the experimental values in

Figs. 3(a) and 3(b), we find that the concurrence CðcÞ of
the prepared two-qubit state is 0.875 (0.929, after cor-
recting for random coincidences), which differs from
the value obtained from Eq. (9) by about 6% (4% after
correcting for random coincidences).

Finally, to test the applicability of our method, we
perform a series of experiments with various values of
slit separation�. Figure 4 shows the measured coincidence
counts as a function of ls for four different values of �:
�=6, �=4, �=2, and �. The high visibility (between 85%
to 92%, without correcting for random coincidences) of
these plots shows that the angular-position correlations of
the signal and idler photons are almost uniform over the
entire range of 2� radians and that the method is applicable
over a wide range of � values.

In conclusion, we have studied two-photon interference
in the angular domain and have reported experimental
demonstrations of an entangled two-qubit state that is
based on the angular-position correlations of the entangled
two-photon field. These results provide an additional
means for preparing entangled two-qubit states and con-
stitute a step towards better understanding angular-
position—OAM entanglement [26–28] and thus towards
finding novel ways of utilizing OAM basis for quantum
information science [19–21,32,34]. We believe that the
method presented in this Letter can be easily generalized
for preparing entangled two-qudit states, using apertures
with d angular slits.
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FIG. 4 (color online). Measured coincidence counts as a func-
tion of ls for four different values of �, with � ¼ �=10 and li ¼
0. Each plot is an average of 24 different plots, taken with the
starting angles of both the signal and idler apertures rotated in
steps of 15� from 0� to 360�.
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